• Train

          Develop

          Deploy

          Operate

          Data Collection

          Building Blocks​

          Device Enrollment

          Monitoring Dashboards

          Video Annotation​

          Application Editor​

          Device Management

          Remote Maintenance

          Model Training

          Application Library

          Deployment Manager

          Unified Security Center

          AI Model Library

          Configuration Manager

          IoT Edge Gateway

          Privacy-preserving AI

          Ready to get started?

          Overview
          Whitepaper
          Expert Services
  • Why Viso Suite
  • Pricing
Search
Close this search box.

Google Coral for Computer Vision Applications in 2024

About

Viso Suite is the all-in-one solution for teams to build, deliver, scale computer vision applications.

Contents
Need Computer Vision?

Viso Suite is the world’s only end-to-end computer vision platform. Request a demo.

AI performed in real-time, at the edge, is integral across many industries. In this article, we present Google Coral and its on-device Edge AI with its TPU (Tensor Processing Unit) computing capabilities. Edge AI allows for faster data processing and decision-making by performing computations locally on the device as opposed to relying on cloud servers. This reduces latency, enhances privacy by keeping data on-device, and enables efficient bandwidth use.

Google Coral’s solutions are particularly valuable in applications such as smart cities, healthcare, manufacturing, and retail, where immediate data processing and insights are critical. We will explore the various features of Google Coral and the benefits of enabling robust, real-time AI applications at the edge.

In this article, we cover the following:

  1. Google Coral and its Purpose
  2. Google Coral for Computer Vision
  3. Advantages and Benefits
  4. Examples of Real-world Applications

About us: Viso Suite is the end-to-end computer vision infrastructure solving business challenges across industry lines. With a scalable architecture and easy-to-use interface, Viso Suite makes it possible for ML teams to easily manage the entire machine learning pipeline. Learn how Viso Suite can solve your business challenge by booking a demo with our team.

One unified infrastructure to build deploy scale secure computer vision applications

Enterprise infrastructure you need to deliver computer vision systems faster, operate at large scale, and with maximum security.

 

What Is Google Coral

Google Coral is an edge AI hardware and software platform for intelligent edge devices with fast neural network inferencing. Coral is Google’s initiative for pushing into Edge AI, with machine learning devices that run without a connection to the cloud.

The Coral devices are based on the Edge TPU co-processor (Tensor processing unit), a small ASIC (application-specific integrated circuit) from Google. The Edge TPU was specifically designed to power state-of-the-art neural networks at high speed, with a low power cost.

Using Google Coral for Computer Vision

Google Coral devices can run machine learning models for Object Detection, such as TensorFlow, to detect objects in video streams. A pre-trained AI model can be deployed to the device, using a local video camera as the input. The Coral Edge TPU will detect objects locally without having to stream the video to the cloud.

Google Coral offers two main AI hardware and accelerator products that are optimized for Edge Intelligence Solutions, especially AI inferencing on the edge:

1.) Computing Device: Single-board computer

A standalone Development Board that includes the System-on-Module (SoM) and is a ready-to-use edge computing device.

Google Coral Edge Device Computer
Coral Edge Device Computer (Source: Google Coral)
2.) AI Accelerator Module: USB accessory

A separate TPU accelerator device that can be connected to a PC through USB (USB stick), PCIe, or M.2. connector (Module).

Google Coral AI USB Accelerator
Coral AI USB Accelerator (Source: Google Coral)

Advantages and Benefits of Google Coral

The Coral Edge TPU boards and self-contained AI accelerators build and power a wide range of on-device AI applications. When using Google Coral for Computer Vision projects, many benefits come with its Edge TPU Technology.

Overall, the scalability is based on an excellent cost/performance ratio. This is essential to build AI inferencing solutions in the field, with many distributed devices in a challenging setting (temporary power and network constraints).

  • Privacy-preserving: The Edge AI capabilities allow the processing of visual data locally without streaming it to the cloud. Hence, user data can be kept private, which is critical, especially for powering AI vision applications in the EU or US.
  • Low-power usage: The small single-board computers or USB modules require very little power compared to rather power-hungry GPU chips. For example, 5 V directly from the USB interface powers the Google Coral USB accelerator.
  • High-performance edge ML acceleration allows for fast inference speeds for embedded devices. In addition, AI inferencing for low-power devices enables the use of Edge AI hardware to power large-scale AI solutions.
  • Offline capabilities allow the use of Google Coral hardware in the field where connectivity is limited. However, most edge AI devices are able to provide offline capabilities (built-in storage and robust auto-rebooting capabilities).
  • Good Cost per FPS ratio due to the relatively low price for such edge computing devices compared to alternative AI hardware. The USB accelerator costs between 60 and 75 USD and the single-board computer Dev Board is priced at around 130 USD.

Examples of Real-World Applications With Google Coral

The Google Coral AI hardware can power a wide range of AI inference applications with Tensor processing units (TPUs). The most popular use cases of Coral TPUs are based on computer vision and visual deep learning on the edge.

  1. Object detection: Detect objects and people (using face recognition) with a real-time video of a camera.
  2. Pose estimation: Estimate the poses of people or objects based on the detection and tracking of key points.
  3. Image segmentation: Identify various objects and their location on a pixel-by-pixel basis of a video stream.
Object detection use case showing a traffic analytics application
Object detection and tracking AI inference application for traffic analytics

What’s Next for Google Coral

Read more about what you can do with AI hardware and AI accelerators such as the Google Coral TPU.

Follow us

Related Articles

Join 6,300+ Fellow
AI Enthusiasts

Get expert news and updates straight to your inbox. Subscribe to the Viso Blog.

Sign up to receive news and other stories from viso.ai. Your information will be used in accordance with viso.ai's privacy policy. You may opt out at any time.
Play Video

Join 6,300+ Fellow
AI Enthusiasts

Get expert AI news 2x a month. Subscribe to the most read Computer Vision Blog.

You can unsubscribe anytime. See our privacy policy.

One unified solution for enterprise AI vision

The computer vision infrastructure for teams to build, deploy and operate real-world applications at scale.